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LINEAR INTEGER PROGRAMMING

THE PROBLEM

The following problem provided the motivation for this study:

Maximize 2z = cx
subject to
Ax < b
x =2 0, and x is an integer

where

A is an m X n matrix

b is am X 1 column vector

x isa n X 1 column vector

cisal X nrow vector.

This is a standard linear integer programming problem. Problems of this form occur
quite frequently in modern technology and in numerous applications. In many cases the
ease of formulation is quite deceptive because they are in general very difficult to solve
numerically.

During the last decade a powerful new method, the group theoretic approach, was
developed. This novel approach was pioneered by several research workers: Glover [1],
Gomory [2], Hu [3], and White [4].

This report is concerned with some of the mathematical aspects of the group theoretic
approach to linear integer programming. The manner in which a group is associated with a
linear integer program is discussed. Corresponding to each linear integer program is an
associated polyhedron. The geometric structure of this polyhedron reflects the structure
of the linear integer program. More precisely, if one knows the polyhedron, then under
appropriate conditions the optimal solution of the integer program is known. For alge-
braic reasons, these polyhedra will be called Abelian polyhedra. Some properties of
Abelian polyhedra associated with Abelian groups are considered. Finally, a computer
implementation of the group theoretic approach is presented in Appendix A.

Note: Manuscript submitted July 10, 1974.
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JAMES J. SWANEK
THE GROUP OF A LINEAR INTEGER PROGRAM
Consider the integer program:

Maximize z = cx

subject to
Ax = b
x =2 0, and x is an integer
where A is an m X n matrix.

We may assume that A contains the m X m identity matrix I, as a submatrix. This
is not too restrictive because we can add slack variables to a set of less-than-or-equal-to
inequalities, and any linear program can be expressed in terms of less-than-or-equal-to
inequalities. In addition, assume that A and b contain only integer entries.

Suppose an optimal, not necessarily integral, solution £ = (£g, £x) has been obtained
with optimal basis B where £g and £y are the basic and nonbasic variables, respectively.
The problem is reformulated as

Maximize 2 = ¢X = cgXp + cNXIN

where

A% = B¥p + Niy = b

R
A%
=]

Since

y B1(b - Nxy),

Ea]
o
Il

then

cgB (b - Niy) + cNZN

0
8
i

i

cgB™1b - (cgBIN —cn)iN

cgB1b — ckin

where ¢ = cgBIN — ¢y > 0 is the relative cost of £x.

The problem is to find a nonnegative integer vector x! = (xfg, xl{,) that maximizes
z = cx and satisfies the constraints. Note that maximizing c¢x = ¢gB™1b — cf\}xN with
cl"\} > 0 is equivalent to minimizing cff/xN. We may express the corresponding linear
integer program in the following form.
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Minimize cf'{rxN, where cff; > 0 is the fixed relative cost of xp, subject to
Bxp + Nxyy = b,
(x, xN) = 0, and (xp, xN) is integral.

Consider the column vectors of B and N as elements of the free Abelian group

m
Fn = (& z,
i=1

the direct sum of m copies of the integers Z. Because A = (B, N) contains the m X m
identity matrix I, as a submatrix, the subgroup generated by the columns of A is the
entire free group F,,,. Let Fp be the subgroup generated by the columns of B. The
factor group G = F,, /Fp is called the group of the linear integer program relative to the
basis B.

The group G is a finite Abelian group of order equal to the determinant of B,
Det(B). More precisely,

G = é Z(€;)

i=1

where

m
€;l€e;41 and H €; = Det(B).
i=1

That is, G is a direct sum of the group of integers modulo ¢€;, €; is a factor of €;141, and
the product of the integers ¢; is equal to the order of G, Det(B). This follows from the
observation that for any m X m integer matrix B, there are unimodular integer matrices
U; and Us such that

U1BUz = D(g;)

where D(€;) is a diagonal integer matrix with ith diagonal entry €;, and €;|€;41 .

In group theoretic terms, there exists a basis {e;} for the free group

such that {€;e;} is a basis for the subgroup Fp generated by the columns of B. We obtain
the following expressions in group theoretic notation:

ITITSSVIINN



JAMES J. SWANEK

m m
Fm=®z=® (@
i=1 i=1

m
Fg = @ (g;ep
i=1

where {g) denotes the subgroup generated by the group element g.

Using basic facts from group theory, we obtain

m
@ (e,-) m o) m
_Fm =1 N &) .
G = Fg m - @ (e;ep) @ (i)
<€iei) i=1 i=1
i=1

where ~ denotes ‘ is isomorphic to.”

Let ¢ be the natural homomorphism mapping F,, onto the factor group G. Let b;
and n;.,, be the column vectors of B and N, respectively. Consider

m n-m
Bxy + Nxy = Z xb; + Z Xm+iNMm+; = b
i=1 i=1

where x; are nonnegative integers and these relations are considered as an equation in the
free group Fy,. In the next diagram the symbol )—) denotes the one-to-one homomorphism
i and the symbol —) denotes the onto homomorphism ;

s ¥ F, 2y oa.

Applying ¢ to the above equation over Fy,, we obtain a corresponding equation over G:

D xiob) + ) xirm@(niem) = p(b).
i=1 i=1

Because b; is in the subgroup Fp generated by the columns of B, which is the kernel
of ¢, ¢(b;) = 0in G. For any group element g in G, define

v(g) = Z Xi+m

o(niem)=g
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if there is a column n;+,, of N such that v(n;+;,) = &, otherwise set v(g) = 0. Thus, we
obtain the following group equation over G where G* denotes G — {0}:

v(g) g = &
geGt

where g = ¢(b), v(g) = 0 and v(g) is an integer.

Define

m(g) = Min {¢]sn |00 1m) = g}
1

where cj, +; is the relative cost associated with column Ri+m Of N. If there does not
exist a column n; 4+, of N such that ¢(n;4,,) = g, define 7 (g) as +oo; that is, a large posi-
tive number.

To summarize, every linear integer program of the form

Maximize z = cx = cgxp + ecNxy = cgB™lb — (cgB™1N - cnN)xn
subject to
Ax = Bxg + Nxy = b,
x = 0, and x is an integer,

where A is an m X n integer matrix with optimal basis B and b is an integer m X 1-

column vector, induces the following optimization problem over the finite Abelian group
G: <

Minimize ). m(g)v(g)
geGt

where 7(g) = 0 subject to

). v@eE = g.

geGt

Here, v(g) are nonnegative integers, g are nonzero group elements in G, and g is a fixed
group element of G. Under suitable conditions, an optimal solution of this group problem
completely determines an optimal solution of the corresponding linear integer programming
problem. See Gomory [2] or Hu [3] for details.

G3TITSSYTAND



JAMES J. SWANEK
GEOMETRIC ASPECTS OF LINEAR INTEGER PROGRAMMING

Consider the linear programming problem:

Maximize z = cx

subject to
Ax = b
x= 0

where A and b have integer entries. Assume that {x|Ax = b and x > 0} is a bounded
set. There are four convex sets that may be associated with this problem that give insight
into the geometric structure of the corresponding linear integer program. They are the
following:

Py = {x|Ax = b and x = 0},
P; = convex hull {x]|Ax = b, x 2 0, and x is an integer},
PB = {x|Ax = b and x5 = 0}, where x are the nonbasic variables associated with

a fixed optimal basis B,
PIB = convex hull {x|Ax = b, xy = 0, and x is an integer}.

The vectors x are elements of Euclidean n space E". The convex hull of the set S in E"
will be denoted by Conv(S). The convex hull of a set S is the smallest convex set con-

taining S. The affine hull of a set S will be denoted by  Aff(S). The affine hull of a set
is the smallest affine subspace containing the set.

The set P}B is called the corner polyhedron associated with the optimal basis B of the
linear program. The geometry of this set PIB plays an important role in analyzing the be-
havior of the associated linear integer program. The various relations between these sets
are illustrated by Fig. 1.

Note that the optimal solutions of the linear program correspond to vertices of the
convex polyhedron Py. The optimal solutions of the integer program correspond to
vertices of the polyhedron P;. See Gomory [2] for a more detailed discussion of the
preceding points.

ABELIAN POLYHEDRA

In the following discussion familiarity with basic facts from elementary group theory
will be assumed. Some acquaintance with Gomory’s work [2] on the group theoretic
approach to integer programming would be helpful. It will be assumed that all Abelian
groups referred to are finitely generated and any references to a vector space will be to
Euclidean n-space E™. Some definitions are required.
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P sPo /

PE <p®
R, <P®
g e DENOTES VERTICES OF P,
€
151 o DENOTES INTEGER VECTORS

Fig. 1—Diagram showing the rélationships between
Py, Pp, PP, and PE
Definition 1. Hyperplane {a, x) = §

The hyperplane {a, x) = 8 is the set {x € E"|{a, x) = §} where a is a fixed vector in
E™ and x is an arbitrary vector in E®. The symbol

n
(a,x) = Z a;xX;
i=1
denotes the inner product of the vectors a and x, § is a scalar.

Definition 2. Half-Space H* = {a, xX) < for H = {a,x) > 8

The half-space H* = {a, X) < B is the set {x € E"|(a, x) < f} while the half-space
H™ = <{a, x)> B is the set {x € E"{a,x) > B}.

Definition 3. Polyhedral Set

A polyhedral set is a nonempty set in E” that is the intersection of a finite number
of half-spaces.

ATITSSYIOND



JAMES J. SWANEK
Definition 4. Polyhedron

A polyhedron is a bounded polyhedral set or, equivalently, the convex hull of a
finite set in E",

Corresponding to a subgroup K of a free Abelian group F,, on n-generators is a class
of convex subsets of E®. We shall call G(K, n) the Gomory class of F, relative to the
subgroup K. The members I', of G(K, n) will be called Gomory sets of F, relative to K.
Consider the representation of the free group F,, on n-generators as the set of all n-vectors
v with integer components v;. Let S = {v € F,lv; = 0 and v # 0}, and let {K +v|v € F,}
be the coset decomposition of F,, relative to the subgroup K.

Definition 5. Gomory set I},

A Gomory set I}, is the convex hull of (K +v) N S in E" for some coset K + v where
the elements of (K + v) N S are considered to be vectors in E",

To every linear integer program there is an associated Gomory set whose geometric
structure gives information about the optimal solution of the associated integer program.
In certain situations the vertices of the associated Gomory set determine the optimal solu-
tion of the linear integer program. In addition, Gomory suggests that a further analysis
of the geometric structure of Gomory sets could lead to the development of improved
methods for solving linear integer programs. In terms of the original integer program we
are interested in the Gomory set generated by the coset Fg + b where Fp is the group
generated by the columns of the optimal basis B and b is the right-hand requirement
vector. Thus, it is of some interest to investigate the vertices of a Gomory set.

Definition 6. Vertex of a convex set

A vertex of a convex set is an element of the set that cannot be expressed as a con-
vex combination of other elements of the set.

Determining all vertices of a given Gomory set I}, appears to be quite difficult in
general. Some insight may be gained by reformulating this problem in algebraic terms.

We shall need the following definitions. Note that there is a partial ordering on F,, de-
fined by vl < v2 if and only if for each component i, vi1 < p2

2.
Definition 7. Minimal element of (K + D) N 8
A minimal element v° of (K + ) N S has the properties
(i) e (E+D)NnS
(ii) ve (K+9)N S and v < v° implies v = v°.
Definition 8. Irreducible element of (K + ) N S

An irreducible element v* of (K + ) N S has the properties

() v*e E+9) NS



NRL REPORT 7797

(i) If 01 < v*, v2 < v* and v! and v2 belong to the same set (K +7) N S for
some 7, then vl = p2,

Definition 9. Algebraic extremal of (K +0) N S
An algebraic extremal v of (K + ) N S has the properties
(i) ve(K+Dd)n S
r .
(ii) Ifnv = Z »v’ where v/ € (K+9)n S and n > 0, then v = vl for some J.
=1

The following theorem relates the vertices of a Gomory set I}, = Conv((K +0) N S) to
the algebraic extremals of (K + §) N S. First, we require the following lemma.

Lemma 1. Assume

the components of v* and v! are rational numbers, the scalars Aj are positive, and Zh; = 1.

Then the scalars ?\j can be chosen to be rational numbers,

Proof. Embed the n component vectors v, v’ in En+l by adding an n + 1 compo-
nent equal to 1. Let A be the n + 1 X N matrix whose jth column is the vector (v/, 1).
Consider the matrix equation

AN = (vF1).

Assume that this equation has a strictly positive solution A > 0. Suppose A has a
submatrix B of rank n + 1. If A = (A\g, Ay) is partitioned relative to B, then

It

AN = Bh\g + Ny = (v%,1)

I

Brg = (v*,1) - N\y.

Since the components of Ay are all positive, there exists a 3\N with positive rational num-
ber components such that |[Ax — Anll < € where || || denotes the Euclidean norm and €
is an arbitrary small positive number. Note that B™1 has rational number entries since B
had rational gntries. Continuity considerations imply that the components of Ap corre-
sponding to Ay are positive rational numbers. Thus, the scalars A\j may be chosen as
positive rational numbers if the matrix A has rank n + 1.

Suppose the rank of {(vj, 1)} is less than n + 1, then add the least number of ortho-
normal basis vectors e# from E"*1 so that the augmented set {(v’, 1)} U {ek} has rank
n + 1. Consider the relations

AITITSSYTIANN



JAMES J. SWANEK

2 N 2
W51) + ) ek = 37 Nl 1)+ ) ek
k=1 j=1 k=1
1 : 1 & : 1<
— * Rl = - (1 k
Q+1(U’1)+kz=;e 52+1].Z=:1)\J(v’1)+52+1kz=;e'

By the previous case, the scalars on the right may be assumed to be rational numbers 7, :

2 N 2

1 .
el (CH VRS I IR IR (U V) I
k=1 i=1 k=1
1 & : 1
% 1y - ] _ k
T 05D ;rj(v,1)+;;1(rk Q+1>e.

Let ({(v*, 1), (v, 1)} denote the vector subspace of En*1 generated by the set {(v¥, 1),
(v’,1)}. The manner in which the set {e*} was chosen determines that

(% 1), @, 1Y N {ek) = (0

where 0 is the zero vector. Consequently, all the scalars rp — 1/(2 + 1) are zero and
Z’fe:l rr = /(2 +1). Thus, the following relations hold:

©* 1)

I

2, @+ D@1,

N
=

A

Q+1)r; > 0,

N
Y @+l = gt =1
j=1

This completes the proof of the lemma.

Theorem 1. Let Iy be the convex hull of (K +%) N S. Then v* is a vertex of Iy if
and only if it is an algebraic extremal of (K +V) N S.

Proof. Suppose v* is not an algebraic extremal of (K + §) N S. There exists a positive
integer p and vectors v’ in (K + #) N S that satisfy the following equation in the free
group Fj:

p
pv* = Z vl
i1

10
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This equation implies the following vector equation over E™:

14 1 .
* _ J
v¥ = _5_ = v’
£ p
J=1
Since v® is a convex combination of other vectors in I}, it is not a vertex of I},.

Conversely, suppose v* is an integer vector in (K + §) N § that is not a vertex of L.
There exist vectors v/ in (K + 8) N S and positive scalars A;j for which

N .
* _ ]
v —E Aju
j=1

.Z?\j = 1.

and

Since the components of v* and v/ are integers, Lemma 1 implies that the positive scalars
Aj can be chosen as rational numbers. Let Aj = & j/D where D is a least common denom-
inator for the set of rational numbers. Multiplying the preceding vector equation by the
integer D, we obtain an equation having meaning in the free group Fj:

N
Dv* =37 !l 3 g =D

i=1 -

S,
1]
—

S,

D
Dv* = Z vl

where both v* and v’ € (K +9) N S. Consequently, v* is not an algebraic extremal of
(K+0) N S.

The properties of being a minimal element, an irreducible element, or an extremal
element of a Gomory set I}, are successively stronger conditions. This is shown by the
following proposition.

Proposition 1. Every algebraic extremal is irreducible, Every irreducible element is
a minimal element,

Proposition 1 follows easily from the definitions. However, the converse does not hold.
There are minimal elements that are not irreducible, and there are irreducible elements
that are not algebraic extremals. This will be more apparent in the sequel. First, we
shall proceed in our development.

The nature of the Gomory set I}, = Conv ((K + D) N S) depends not only on the free

group F,, but more critically on how the subgroup K is embedded in F,,. We shall illus-
trate this in a more restrictive setting. First, consider the following definitions.

11

AFTITSSYTIONN



JAMES J. SWANEK
Definition 10. Torsion kernel of a free group

A torsion kernel K is a subgroup of a free group F,, on n-generators such that the
factor group F,/K is a torsion group.

Definition 11. L. P. Kernel of a free group

An L. P. kernel K is a subgroup of a free group F,, on n-generators such that the
factor group F,/K is of cardinality n + 1.

The next theorem and succeeding remarks will relate Gomory sets to the group
optimization problem and linear integer programming.

Theorem 2. A Gomory set I}, = Conv ((K + V) N S) associated with a torsion
kernel K is an n-dimensional polyhedral set.

Proof. 1t is assumed that K is a subgroup of the free group F,, with n-generators {ej }.
By hypothesis, there is a positive integer O; such that O jeJ is in K. Suppose that v* €
(K +9) N 8; then

v* + Ojel € (K+0) N 8.

The set {v*} U {v* + O jej } is contained in (K + 0) N S and is affinely independent.
Thus, I}, contains an n-simplex and consequently I}, is an n-dimensional convex set.

The following remarks on convex sets are well known or easy to show. The convex
hull of a set of integer vectors is a closed convex set. Any closed convex set is an inter-
section of closed half-spaces. Consequently, I}, is an intersection of half-spaces. Applying
arguments similar to those used by Gomory [2, Theorems 6 and 7], one can easily show
that [, is an intersection of a finite number of half-spaces. Hence, I}, is a polyhedral set.
Remark. Suppose that K is an L. P. kernel of the free group F,, on n-generators. It is
clear that K is necessarily a torsion kernel and the associated Gomory sets I}, = Conv
((K + ) N 8) are n-dimensional polyhedral sets in E™. In the sequel we shall consider
only L. P. kernels. These kernels are related to the group optimization problem in the
following manner. Let G be a finite Abelian group of cardinality n + 1. Consider the
following diagram

Ky iy

where ¢ is the homomorphism induced by associating the generator e, of F,, with the non-
zero group element g of G. Note that the kernel K of ¢ is an L. P. kernel of F,, and i is an
injection map. Consider the Gomory set I}, = Conv ((K + #) N S) where ¢(0) = &. Note
that (K + 0) N S consists of all vectors v whose gth components v(g) are nonnegative
integers and v satisfies the group equation Xgzc g+ v(g)g = & over G. In the sequel we
shall consider the Gomory set I's as the convex hull of all vectors v whose gth compo-
nents v(g) are nonnegative integers and v satisfies the group equation = gegt V(@) = 8.

12
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Let us consider the following group optimization problem:

Minimize
v(g)n(g)
geG*

where m(g) > 0 is the fixed cost associated with the group element g, subject to

vg)g = 8
gegt

v(g) = 0.

Some vertex v* of the Gomory set I'; is a solution of this problem. Conversely, to every
vertex v* of I's, there is a cost function 7* such that v™ solves this optimization problem
for the cost function 7*. Furthermore, Gomory has shown that the vertices of l"g are
closely connected with the optimal solutions of linear integer programs.

The next results deal with the rate of growth of the number of vertices of a Gomory
set as a function of the group structure of G. The problem of rates of growth of the
number of vertices was suggested by Gomory as an area for further work and investiga-
tion. This is important because the nature of the Gomory set reflects the structure of
the associated linear integer program. For simplicity we shall deal with the Gomory set
I'y, the convex hull of all nonnegative integer vectors v in E" such that

Z v(g)g = 0 and v is not the zero vector.
geGt

Let V(G) denote the number of vertices of the Gomory set I'; associated with the
finite Abelian group G.

Theorem 3. Suppose K is a subgroup of the group G. Consider
dyagfy @
K)*>—)G--=» X

where i is the injection map and ¢ is the canonical homomorphism onto the factor group
G/K. Then V(G) = V(G/K) |K| where |K| denotes the cardinality of the subgroup K.

Proof. Let g denote a generic element of G, and k a generic element of G/K. Let v be
an arbitrary vertex of Iy over G/K. Note that v(h) is a nonnegative integer and

EhE(G/K)“‘ v(h)h = 0. Define

¢ L(h) = {g € Glo(g) = h}.

13
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JAMES J. SWANEK

In algebraic terminology, ¢~1(h) is the coset gy + K in G where ¢(g,) = h and g}, is some
fixed member of the coset. Each coset g, + K contains |K| elements.

It is possible to construct a set of |K| vertices over G corresponding to v over G/K.
Intuitively, the canonical homomorphism ¢ is used to pull v back into G. More precisely,
consider the following construction. Suppose v(h) > 0 and define a vector v over the
corresponding coset p~1(h) = g, + K as follows. Choose an arbitrary g, in ¢ 1(h) = g, + K
and define v(g,) = v(h) and v(g) = O for all other g in g, + K. Repeat this construction
for each h in G/K where v(h) > 0 and notice that a set of at least | K| vectors ¥ correspond-
ing to v are finally obtained. Applying some elementary group theory, it follows that
EgeGN K U(g)g = k where k is in the subgroup K. Using some elementary convexity argu-
ments and some facts about homomorphisms, we see U to be a vertex of the Gomory set
I, over G. By choosing the vectors v carefully, it is possible to force k to be the zero
element. Thus, to each vertex v of I}y over G/K, there corresponds | K| vertices {v} of
Iy over G. Intuitively the set {v} are those vertices over G that are mapped by the
homomorphism ¢ onto v over G/K.

2 @z =0 ) el

geG-K geG-K

2. ) e

he(G/K)* geyp™(h)

2. Y. e

he(G/K)* gep ™l (h)

It

v(g) |

hE(G/K)+|: geyp™1(h)

Z v(h)h = 0.

he(G/IK)*

I}

Consequently, there are at least V(G/K)|K| vertices of the Gomory set Iy over G and
Theorem 3 follows.

The following two corollaries are easy consequences of Theorem 3.

Corollary 3.1. Let Z(p) be a minimal subgroup of G where p is a prime. Then

Z(p)

V(G) > V <i> D.

Corollary 3.2. Let H be a maximal subgroup of G where G/H =~ Z(p) and p is a
prime. Then

14
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V(G) > V(Z(p)H].

For example, consider the two groups

G1 = Z(2) ® Z(5)

Gg

Z(2) ® Z(4).

The following facts on the number of vertices of the Gomory sets I}, for the respective
groups are known:

V(2(2))

Il

1,

V(Z@4)) = 4,

Il

V(Z(5)) = 10,
V(Gy) = 40,

V(Gg) = 9.

V(G1) = V(Z(5))- 2,
V(Gy) = V(Z(2))- 5,
V(Gg) > V(Z(4) - 2,
V(Gg) = V(Z(2))- 4.
The problem of determining strong inequalities to gage the rate of growth of the number

of vertices as a function of group structure appears to be quite difficult. The following
inequality is conjectured for groups G of large order. If G is a group of order

where p; is a prime, then
N
vie) > [ vew)~.
i=1
Corollary 3.3. If G is not a direct sum of cyclic groups of order 2, then V(G) = |G].

Proof. Suppose G = Z(p) where p is a prime other than 2. The following facts are easy
to verify. For each element g° in Z(p), the vector (0g, g°O(g°)) is a vertex of the Gomory

15
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set Ily where 8z g is the Kronecker delta and O(g) denotes the order of the group ele-
ment g. In addition, for each g° in Z(p), the vector v satisfying

v(g®) = v(-g%) = 1
vEg) =0, g#g or g
is a vertex. Consequently,
V(Z(p)) = |Z(p)I.
Suppose the corollary is true for all groups of cardinality less than n and |G| = n. The

group G has a subgroup Z(p), and G/Z(p) is not a direct sum of cyclic groups of order 2.
Apply Corollary 3.1 and the inductive hypothesis to obtain

G G
V(G) = ‘ICZG;Q P ;B'Eﬁgslp = |G].

Note that for groups G that are direct sums of cyclic groups of order 2, Gomory [2] has
shown that the total number of vertices summed over all Gomory sets Fg forg + 0 is
asymptotic to

g Jlog2IG 111 +0(1G1)]

where ¢ (|G|) > 0 as |G| — oo,

There is an important class of polyhedra associated with the Gomory sets I',. We
shall call these polyhedra F;, Abelian polyhedra. It will be seen that the Abelian polyhedron
P, is contained in I',, and all vertices of Fg are vertices of Pg, but not conversely, The fol-
lowing definitions make this concept more precise.

Definition 12. Abelian polyhedron Pé

Let 2 be a fixed element of the finite Abelian group G. An Abelian polyhedron Pg
is the convex hull of all nonnegative integer vectors v such that

Z vig)g =& and v(g) < O(g), (and v is not the zero vector)
geB*
where O (g) denotes the order of the group element g.
Definition 13. Kernel polyhedron P,

A kernel polyhedron P, is an Abelian polyhedron with fixed element £ equal to the
zero group element.

16
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It is possible to describe the relation between the Gomory set Fg, and its associated
Abelian polyhedron F; in greater detail. Recall that I}; is an n-dimensional polyhedral
set. In fact, Gomory has shown that

where

m; = {ve E"r;,v) > 1}
or

m; = {ve E"Kn;, v)> 0}

and the components 7; (g) of m; have other special properties that reflect the structure
of G.

The following remarks will indicate that

M
Pg = T N n m;
i=1 ji=1
where
M = {fve E"{r, vy < 1}
or
m; = {ve€ E"{n,viz=1}

J
First, consider the following definition and well-known results on polyhedral sets.
Definition 14. Convex cone

A convex cone C is a subset of E" with the following property. If vy and vg are
vectors in C, then Aqjv; + Agve is in C where Ay and A9 are nonnegative scalars.

Theorem 4. [5,6] Let S= {v &€ E"|Av < b} be a polyhedral set in Euclidean n-space.

Then S = P + C where P is a polyhedron and C is a convex cone. In particular, C =
{ve E"|Av < 0} ' '

Theorem 5. Let P be an n-dimensional polyhedral set and H* a half-space in Eu-
clidean n-space. Then every vertex of the polyhedral set P N H* is either a vertex of P
in H* or the unique point of intersection of the bounding hyperplane H of H* with an
edge of P that does not lie on H [7]. ’

17

FATITSSYTONN



JAMES J. SWANEK

Lemma 3.1.

N M N
~=F§ﬂ‘ .sz' .Tfim‘ '77'
i=1

i=] 1=

Proof Recall that a polyhedral set in E" is a finite intersection of half-spaces. In addi-
tion, a bounded polyhedral set is a convex hull of a finite set of points in E™ and con-
versely. See McMullen and Shephard [8] for details. Consequently, there are finitely
many half-spaces of m; of the form

M = {vEE"I(Tr v < 1}
or
7 = {ve E"(m,v)> 1}
such that
N
Py =I5 0 n ;.
ji=1

Note that by Theorem 4, the polyhedral set I}; is the vector sum of a convex poly-
hedron Pék and a convex cone C;. The nature of P¥ is difficult to analyze and Pgik may
be distinct from P;. Recall that P; is the convex hull of all vectors v with nonnegative
integer components such that 2 geG* v(g)g = £. 1t is conjectured that the half-spaces 7;
in Lemma 3.1 are of the form

{U S Enl(ﬂ' v < 1}

also, ;i (g)=0for g # & and 7(g;) = 1 /0 (gj) where O (g;) is the order of the group ele-
ment 4.

The following results deal with kernel polyhedra. It is reasonable to say that the
structure of kernel polyhedra mirrors the structure of the corresponding group. This will
be supported in the following development. It is conjectured that the kernel polyhedron
will determine the structure of all Abelian polyhedra associated with a given group. Re-
call that any linear integer program induces an Abelian polyhedron which reflects the
structure of the integer program. If one knows the Abelian polyhedron, then, in many
cases, the optimal solution of the linear integer program is known. At any rate, kernel
polyhedra have some very interesting symmetry properties that shed some light on their
geometric structure. First, some definitions are required.

Definition 15. Collapsed kernel polyhedron

Let V be the set of all vectors v in E" satisfying the following properties:

18
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(i) The gth component v(g) satisfies O < v(g) < O (g),
(i) Eg&.GJ, v(g)g = 0 in the group G of cardinal n + 1,
(iii) v is not the zero vector,
(iv) Some component v(g) is less than O (g).

A collapsed kernel polyhedron P over a group G is the convex hull of the corresponding set
V. Recall that O (g) denotes the order of the group element g.

Intuitively, a collapsed kernel polyhedron is the nontrivial or essential part of the correspond-

ing kernel polyhedron. The collapsed polyhedron is easier to work with and more clearly
reflects the algebraic structure of its underlying group.

Definition 16. Supporting hyperplane of a convex set

The hyperplane (m, () is called a supporting hyperplane of the convex set S if
(i) S is contained in one of the half-spaces (7*, §) or (77, §),
iy SN (w,B)+ ¢.

Definition 17. j-dimensional face of a convex set

A j-dimensional face F of a convex set S is a set of the form F = 8 n-(w, 8) where
(m, B) is a supporting hyperplane and Aff (F) is of dimension j.

Definition 18. Facet of a convex set

Let S be an n-dimensional convex set. A facet F of the convex set S is an n — 1 dimen-
sional face of S.

For example, consider a tetrahedron in 3-space. It is a 3-dimensional convex polyhedron.

A vertex is a O-face, an edge is a 1-face, a side is a 2-face, or facet in this case, and the
tetrahedron itself is the unique 3-face.

The following results illustrate some of the interesting symmetries associated with a
collapsed kernel polyhedron. First, the following well-known result on polyhedra is
required.

Theorem 6. Let P be a convex polyhedron and let W C V = vertices of P. Then
Conuv(W) is a face of P if and only if Aff(W) N Conv(V-W)=¢ [8].

Definition 19. Conjugate vector over a group

Let v be an n-dimensional vector in E" indexed by the elements of a group. The
conjugate vector U of v is a vector whose gth component is v(g) = v(-g).

19
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Lemma 3.2. The faces of a collapsed kernel polyhedron P over a group G occur in
conjugate pairs. If F is a j-dimensional face of P, there exists a j-dimensional conjugate
face F.

Proof. Let V be the set of vertices of P and the subset {vlF} be the vertices of F. Apply

Theorem 6. Thus,
Aff({!)f}> N Conv (V - {an}> = ¢.

Note that v =% )\ivi implies 7 = 2 7\1-51', taking conjugates preserves linear combinations.

This implies
Aff({vf}) N Conv V*({ v}‘"}) = 9.

Consequently, F = Conv ({5f'}> is a j-dimensional face of P,

'

|

Corollary 3.4. Vertices of a collapsed kernel polyhedron occur in conjugate pairs.

Note that some faces may be self conjugate, that is F = F. However, conjugation is an

involution, F = F.

There is another class of symmetries associated with a collapsed kernel polyhedron.
Consider the next definition.

Definition 20. Complement vector over a group
Let v be an n-dimensional vector in E” indexed by the elements of a group. The
complement vector v¢ of v is a vector whose gth component is v¢(g) = O(g) — v(g) where
O(g) denotes the order of the group element g.
It is easy to see that complementation is an involutory, affine transformation of E™:
vee = v

v=2 \;v; and T A; = 1 implies v¢ = I A;0f.

Lemma 3.3. The faces of a collapsed kernel polyhedron occur in complementary
pairs. If F is a j-dimensional face, there exists a j-dimensional complementary face F°.

Proof. The proof is similar to that of Lemma 3.2,

Corollary 3.5. Vertices of a collapsed kernel polyhedron occur in complementary
pairs.

In contradistinction to the operation of conjugation, there are no self-complementary

proper faces. This will be shown in the sequel. The next corollary formalizes this
observation.

20



NRL REPORT 7797

Corollary 3.6. A collapsed kernel polyhedron has an even number of proper faces of
each dimension,

If the facets of an Abelian polyhedron are known, then the Abelian polyhedron is known
and consequently, certain structural properties of a linear integer program associated with
the Abelian polyhedron are known. To further understand how the algebraic structure of
the group G is reflected in the geometric structure of the corresponding collapsed kernel
polyhedron P, it is necessary to analyze the facets F of P. Recall that the vertices of a
facet F span an n — 1 dimensional affine subspace and are a subset of the vertices of P.
Consequently, a facet F determines its supporting hyperplane (w, 3) relative to a multipli-
cative constant. Thus, the facets of P fall into one of three classes depending on the type

of supporting hyperplane, The supporting hyperplanes may be one of the following types:

1l

(i) 7° = {ve E"|z°, v) = 0},

(i) n* = {ve E*#xH v < 1},

I

(i) 7~ = {ve E"{nx",v) > 1}.

In particular, any facet F is of one of the following forms:

F=Pn {ve E*"z°,v) = 0},
F=Pn {veE"(n",v» =1},
F=Pn {ve E"|{(n*,v) = 1}.

As a matter of notation, all vectors v and 7 are in E" relative to an orthonormal
basis. These vectors are indexed by group elements g of G, and v(g) or 7(g) denotes the
gth component of the respective vectors.

Lemma 3.4. Let {(n°, v) > 0 be a supporting hyperplane of a collapsed kernel poly-
hedron P that induces a facet F. Then there is a fixed component g such that 7°(g') = 1
and 7°(g) = 0 for g + g’

Proof. Recall that P is the convex hull of all nonnegative integer vectors v such that

Z vig)g = 0, v+#0 andu@) < O(g) for some component g .

geGt
Since Aff(F) is n — 1 dimensional, there are n — 1 linearly independent vertices of F.
Thus, the vertices of F would not all have zero components for two different coordinates

g; and go. This means there is a fixed coordinate g', and for g # g’ there is a vertex v*
in F and v™*(g) > 0. However,

(7°, v*) = Z 7°(g)v*@E) = 0.
geG*

21
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Note that 7°(g) > 0 for all g, since (7°, v) > 0 supports P and (8, ,O(g)) is in P where
6g:, is the Kronecker delta. Combining the two previous observations shows that
7°(g) = 0 for g # g and 7°(g’) can be chosen to be 1.

Lemma 3.5. Let {(#~,v) = 1 be a supporting hyperplane of a collapsed kernel poly-
hedron P that induces a facet F. Then w~ satisfies the conditions

O @ > 50

(i) 7" (@) +71(-g)=1,
(iil) 77(g; +82) < T(g1) + T (g) < 1+ 7 (g +89).

Proof. Note that the vector (6 ! $O (g)) is in P where 6 ' g is the Kronecker delta. Since
(m~, v} > 1 supports P, O(g')7~ (g )= 1forallg # 0 m the group G. Thus, condition
i) holds Because of the nature of the supporting hyperplane, the facet F contains n
linearly 1ndependent vertices. This 1mp11es that for any coordinate g, there is a vertex v’
of F such that v'(g’) > 0. Note that v'(g’') = O(g') would imply that v (&) = 0 for all
g+ g and 77(g') = 1/0(g). Consider

It

(n=, v")

Y oTEwE) = TE)E) + ) TEYe
geG” g+¢

() + EWE)-11 + ) T @)vie) =
g+g

Suppose thats’ = g; + go. Define a vector v™ as
v¥g) = V@) g+ £,8, or £,
viE) = V') - 1,
v (gy) = Vg + 1,
v¥(gg) = V'(gg) + 1.

Consequently, v™ is a proper vector, that is O < v¥(g) < O(g) for all g # 0. The vector
* satisfies Lot v*(g)g = 0 and consequently is in P. Since (7~, v) > 1 supports P, we
have that (n~, v*) > 1. Hence, the first part of condition (iii) holds;

7 (s') < 7 (gy) + T(g9).

Condition (ii) will be proved next and then the second part of condition (iii) will follow
as a consequence.
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Assume that g° # —g° and define a vector v’ as
V) = V() = 1
v'g) = 0 g+ g or —g°.
Note that v’ is in P and thus (1", v') = 77 (g°) + 7~ (~g°) > 1.

Consider a vertex v* of F such that v¥*(g°) > 0.

[y

1(g%) + 1 @) - 11 + ) 7 (@) =
g+

The validity of the following group equation is clear.

2 = (*) -1 + ), v@e.
g+g°
Recall that #~ is subadditive on G. Thus,

(8) < TE)NE) - 1) + ). 1 @),
g+g°

and consequently 77(g°) + 7 (—g°) < 1. Finally, 7 (g°) + 7 (=g°) = 1 for all g° # —¢°
in G.

It can be shown that condition (ii) also holds for elements g° of order 2.

The second part of condition (iii) follows from the easily verified set of relations
T (g, t8) + W (-g1) + (&) =1,
m(gy) + T (&) + T(-g1) + (&) = 2,
[77(g1) + m7(8g) — 7 (gy +&2)1 + [77(gy +89) + 77(-g1) + 7 (-£p)] = 2,
T (g) + m(gy) — (g t&2) < 1.

It is seen that a supporting hyperplane (7™, v} = 1 of P that induces a facet has a
very special algebraic structure as a function of the group elements of G. It will be
shown that any facet induced by a supporting hyperplane of the form {(7* v} < 1 is the
complementary facet of a facet induced by a hyperplane of the form (77, v) > 1 or
(n°, v) = 0.

Lemma 3.6. Let {(n*,v) < 1 be a supporting hyperplane of a collapsed kernel poly-

hedron P that induces a facet ¥. Then F is the complement of a facet induced by a
supporting hyperplane of the form {x~,v} > 1 or {(z°, v) = 0.

23
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Proof. Suppose F is any j-dimensional face of P, induced by a supporting hyperplane .
There are three cases to consider. Suppose 7 is of the form (n*, v) < 1. Let v° denote

the complementary vector and note that complementation maps P onto itself and carries
the vertex v of P onto another vertex, v° of P. The following relations are evident:

(T, < 1,

(mt,v%) < 1,

v+ = ) T E@)O0G@),
geG”

v = Y T 0@ - > ) T E@0@) - 1,
geGt geGt

v > ) 7o) - 1.
geGt
In fact, the face induced by the supporting hyperplane
(T, v) > Z T (g)0() - 1
gcGt
is the complement of the face induced by the supporting hyperplane (%, v) < 1. It is
clear that these faces are parallel and disjoint. Note that this proves there are no proper

self-complementary faces of P.

For supporting hyperplanes of the form (7=, v) > 1 or (n°, v) > 0, the arguments are
analogous. The following is a list of the associated supporting hyperplanes:

{(w=,00 =2 1,

0 < ) T (@0 - 1,
geGt

(n°v) = 0,

@0 < ) 1°@@)0@).
geG*

Suppose F is a facet induced by a supporting hyperplane of the form {n*, 1) < 1.
Consider the associated parallel half-space
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(m*,v) > Z (@) 0E) - 1.
geGt
If
A=) @0 -1>0,
geGt

define 7* = (1/\)7* when A # 0 and 7#* = 7* when A = 0. Then 7* induces a comple-
mentary facet of the form stated in the theorem. It is sufficient to show that the case
A < 0 cannot hold.

Suppose the contrary. There exists a facet F induced by a supporting hyperplane of
the form (m*,v) < 1, and A = £, g+ 7*(g)0(g) — 1 is negative. For any component g,
there is a vertex v’ of F such that v'(g') < O(g'). Otherwise, for every vertex v of F,
v(g') = 0(g') and since the set of vertices of a facet determines the supporting hyperplane,
7*t(g) = 0 for g # g and w*(g') = 1/0(g’'). Then

1 )
)\=___O _1=0_
0@) &)

It is possible to construct a vector v* in F such that v*(g) < O(g) for every component g.
This construction is based on the following observations. Let v! and v2 be two vectors
in F and define

v*(g) = vl(g) + v2(g) Mod O(g).

Note that any vector v° whose gth components are O(g) or 0 satisfies (r*, v°) < 1. The
following sequence of relations is evident:

(m, vl +v2) = (7%, v™) + (7%, 0°) = 2,
() < 1,
(m*, o™ > 1,
mt v*) < 1,
(w+,v*) = 1.

By an inductive construction on the components, a vector v* in F of the desired form
can be constructed.

25
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Next define a vector v3 as
v3(g) = v¥(e) g+ & oOr &,
v3(go) = v¥(gp) + 1,
v3(-gg) = v*(-gp) + 1.
It is clear that v3 is in P and consequently (7*, v3) < 1 = (7%, v™).
The following inequality is a consequence of the above construction;
nt(g) + 7 (-g) < 0 forall g€ G*.
The next inequality follows in a similar manner. Define a vector v* as
vi(g) = v¥(g) £+ & * &, E1, OF &,
vi(g, +89) = v*(g1 +g9) + 1,
04(‘81) = U*(_g1) +1,
vi(-gy) = v¥(-gg) + 1.
Thus,
M Ty +Eg) * T (g + TH(gy) < 0.

Consider the original supporting hyperplane

v > 3 (@0 - 1,
geG*

which induces the complementary facet. Recall that A = Zscg+ 7*(g)O(g) — 1 is negative and
consequently this supporting hyperplane can be expressed in the form {(1/A\)#*, v) < 1.
By an argument similar to the above, it is found that

3 +

1

X 7t(-g) < 0 forall g € G*.

Since A is negative, we have
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(I1) m(g) + 1t (-8) = 0,
r(g) + 1 (-g) < 0,
at(g) + 77 (-g) = 0 all g€ G*.
Using conditions (I) and (II), we obtain
T (g +89) = 7 (gy) + 1 (g9).

These relations imply that

T (g) + 7 (-g) = 7*(g) + 7 ([0(g) - 1]g)

t(g) + [0(g) - 117*(g) = O(g)m*(g) = O.

Hence, n*(g) = O for all g. This is a contradiction. There are no facets induced by a sup-
porting hyperplane of the form (7*, v) < 1 and 2 7*(g)0(g) < 1.

The above discussion indicates that the facets of a collapsed kernel polyhedron
associated with an Abelian group G are determined by a set of functions 7 with the
properties

7:G > R where R is the real number system,

(i) m(0) = 0, where O is the zero group element

m(g) = a%g—)— where O (g) is the order of g,

(i) m(g) + n(-g) =1,
(iii) m(gy +89) < m(gy) + M(g) < 1+ m(gy *8o)-
Actually, any function 7 that satisfies the above conditions generates a supporting
hyperplane {7, v) > 1 and induces a proper face of the collapsed kernel polyhedron over

the group G. This is apparent from the following relations. Suppose the following equa-
tion and irequalities hold for a vector v over a finite group G:

> e =0,

geGt
0 < v() < 0(g),
0 < wvlgy).

Then,
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2o = [v(E) - 118, + ). v,
g+ 8o

T(-25) < T(g)vigy) - 11 + ). 7@,
g£+80

). m@)ve) > m(g) + m(-go) = 1,
geGt
(m,v) = 1.

Consequently, (7, v) > 1 is a supporting hyperplane of P and induces a face of P.

There are interesting connections between the algebraic behavior of the functions 7
and the geometric nature of the faces that they induce. These considerations motivate
the following definitions and results.

Definition 21. Local morphism

A local morphism ¢ is a map from a finite Abelian group G to R/Z. It has the
properties

(i) ¥(0O) = 0, where O and 0 are the zero group elements of G and R/Z, respectively,
() v(-g) = -V¥(9),

(iii) For any g, there is a nonempty set Sy, where gg € Sz implies that vg1)
+ Y(g2) = V(81 +&2)

Definition 22. Core of a local morphism

The core of a local morphism ¥ is the set of all unordered pairs [g1, g2] of elements
of G with the property

(i) ¥(g1) + Y(g2) = V(g1 +82)
Recall that R/Z denotes the circle group, the factor group of the real numbers under addi-
tion modulo the integers. Let A denote the canonical lifting of R/Z to the interval [0,1].
Recall that R/Z can be considered as the collection of cosets {x + Z} where O < x < 1
and addition is performed modulo 1. In this case A(x + Z) = x.

Lemma 3.7. Any nontrivial facet of a collapsed kernel polyhedron of the group G
induces a local morphism Y of G. Any local morphism ¢ of G with the property

AU(g; +82) + ANY(-g1) + NY(—g2) = 1,

induces a face of P.
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Proof. Any nontrivial facet is associated with a supporting hyperplane of the form
{m,v) > 1. It was shown that 7 has the properties

@ 7(0)=0,
() ™)+ () =1,
(i) m(e1 +£2) < Mlg1) + M(e2) < 1+ m(er + ).

Let ¢ denote the canonical homorphism of R onto the factor group R/Z. Consider
the composite map ¢ = pm. Conditions (i) and (ii) assume the forms

I vO)=0,
(I v@) + y(-8)=el1)=0.
Consequently, ¢ is a local morphism,
Suppose ¥ is a local morphism with the property
AY(gy +82) + AY(=g1) + ANY(-g2) = 1.
Define # = Ay. Then the following relations are evident:
m(g1 +g2) + w(-g1) + w(-g2) = 1,

(i) w() = 0;

m(0) + w(g) + n(-g) = 1,
n(g) + n(-g) = 1,

(i) m(g) + 7(-g) = 1

m(—g1—82) + w(g1) + w(g2) = 1 = m(g1 +8&2) + 7W(-£1 ~&2),

(iia) (g1 +g2) < 7(g1) + 7(g2);

(g +g2) + w(—g1) + m(-g2) + m(g1) + m(g2) = 1 + w(g1) + 7(g2),
(g1 +g2) + 221+ m(g1) + m(g&2),
(iiib) m(g1) + m(g2) < 1 + m(g1 +4&2).

Consequently, 7 induces a face of P.
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The significance of the concept of local morphism and core elements is more clearly
shown in the next result. This result indicates the close connection between the geometric
structure of a facet, and the algebraic properties of the associated local morphism,
Theorem 7. Let (w, v) = 1 be the supporting hyperplane of a facet F. Let v be an

integer vector in F with v(g;) > 0 and v(gs) > 0, then w(g;) + w(gs) = n(g; + go). Fur-
thermore, the vector v* is also in F, where v* satisfies

v (g) = v(g) g8 # £ t+ &2,8, or g,
v¥(g1 +g2) = vig1 +&2) + 1,

v¥(g1) = v(g1) - 1,

v¥(g2) = v(gg) - 1.

In addition, if v(g®) > 0, g° = g; + go, and 7(g°) = w(gy) + W(g2), then ¥ is in F, where
U satisfies

v(g) = v(g) g + & + 82,8, or g2,
U(g1 +82) = v(g1 +8&2) - 1,

v(g1) = v(g) + 1,

U(g2) = v(gg) + 1.

Proof. Consider

(7, v

). m@vE) =1

geGt

T(g1 +E2)v(g1 +82) + T(E1)v(g1) + T(E)v(ge) + L T(&)v(E).

i

If the definition of a collapsed kernel polyhedron over a group G and some elementary
algebra are used, the conclusions of the theorem are easily derived.

Corollary 7.1. Let F be a facet induced by the supporting hyperplane {m,v) > 1.
If v* is a vertex of F such that v*(gg) > 1, then for all vertices v of F, v(—gp) is 0 or 1.

Proof. Suppose there exists a vertex v of F such that v(-gg) > 1. Consider the relation

M, v" + (1,0 = 1) (Eo) + ). mE)@) + T(-20)T(~£0)
g+ 8o

+ ) 1@ = 2.

g+-80
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However, |
7(80)v*(go) + m(-80)U(-80) > 2.
Thus, we obtain a contradiction and this establishes the corollary.

In conclusion, the above results offer but a glimpse of some of the interesting alge-
braic, geometric, and computational problems associated with the group theoretic approach
to linear integer programming. It is clear that there are a number of interesting questions
which are unresolved. For example, can a precise geometric characterization of Abelian
polyhedra be determined? What is the exact connection between the algebraic structure
of an Abelian group and the geometric structure of its associated Abelian polyhedra? How
can the special structure of Abelian polyhedra be exploited to develop efficient algorithms
for solving linear integer programs on a computer?
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Appendix A
COMPUTER LISTING
The group theoretic method for solving linear integer programs has been implemented
on a computer. The following is a listing of an implementation on the CDC 6600 com-
puter. The program is written in Fortran IV and runs under the Kronos Time-Sharing
System. Following the program listings is an example problem that was solved using the
program.

Consider the following example of a linear integer program:

Maximize Z = 4x; + bxo + x3 subject to 3xq + 2x9 < 10, x1 + 4x9 < 11, 8x7 + 3x9
+x3 < 13, 21, x9, x3 = 0, and x1, x9, and x3 are integers.

This program was run on the computer, and the following correct results were obtained.
It should be cautioned that the computer program is experimental. There is still much
work to be done on developing numerical methods for the group theoretic approach to
linear integer programming,

3x1 + 2x9 < 10

x1 + 4x9 < 11

3x1 + 3x9 + x3 < 13

x1,%2,x3 =2 0 and x1, x2, and xg are integers,
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